
TYPES & STATIC ANALYSIS
!

TYPES ARE GOOD, I PROMISE.

SAM GREENWOOD
@SAMTGREENWOOD

TECHNOLOGY MANAGER @ UNITI GROUP

I LIKE TYPES.

WITHOUT TYPES

WITH TYPES

WHAT ARE
TYPES?

DYNAMIC TYPES
DEFINED WHEN WE USE THEM

STATIC TYPES
DEFINED BEFORE WE USE

THEM

STRONG TYPES
CAN NEVER CHANGE

WEAK TYPES
IT HAS A TYPE RIGHT

NOW, BUT IT CAN CHANGE.

WHAT IS PHP?

> Dynamic, Weak!
> Do we wish it was something else?

> There are tools that can help!
> PHP 7.4

TYPES SHOW
INTENT

TYPES MAKE YOUR CODE
EASIER TO READ

AVOID THE FEAR CYCLE
!

> Small changes have unpredictable, scary, or costly
results.

> We begin to fear making changes.
> We try to make every change as small and local as

possible.
> The code base accumulates warts, knobs, and special

cases.

WHAT IS STATIC
ANALYSIS?

STATIC
ANALYSIS IN

PHP

!

STATIC ANALYSIS SUCKS
UNLESS IT KNOWS ABOUT

YOUR CODE!

PROVIDE TYPES WHERE
YOU CAN

GENERATED DOC BLOCKS?
!

LOTS OF TOOLS!

> Psalm - psalm.dev
> PHPStan - github.com/phpstan/phpstan

> Larastan - github.com/nunomaduro/larastan
> Rector - getrector.org

PSALM
PSALM.DEV

> Additional type information
> Generics

> Typed Variables
> Different strictness levels

> 78 rules!

PHPSTAN
GITHUB.COM/PHPSTAN/PHPSTAN

> Similar to Psalm
> Community plugins for more functionality

> Playground @ phpstan.org

LARASTAN
GITHUB.COM/NUNOMADORO/LARASTAN

> PHPStan
> Laravel Flavoured

> That makes it better, right?
> Know's about facades and Laravel internals

RECTOR
GETRECTOR.ORG

> Instant code upgrades
> Generate good doc blocks where needed

> PHP 7.4 property types

> Refactor Laravel facades to DI

!

> Great for legacy

5 THINGS SOMEONE HATES

> Code in comments
> Useless DocBlocks
> Types declarations

> Cider with ice
> Me after this talk

STATIC ANALYSIS ❤

DOCBLOCKS

NOT NOW
!

class Account
{
 private Owner $owner;

 public function deposit(Money[] $money) : Transaction
 {

 }
}

EXTRA TOOLS
!

class Account
{
 /**
 * @var Owner
 */
 private $owner;

 /**
 * @var Money[] $money
 */
 public function deposit(array $money) : Transaction
 {

 }

}

EXTRA TOOLS & PHP 7.4
!

class Account
{
 private Owner $owner;

 /**
 * @var Money[] $money
 */
 public function deposit(array $money) : Transaction
 {

 }

}

DON'T USE
UNNECESSARY
DOC BLOCKS!

IT'S NOT ALL
!

 AND
"

!

$user = User::find(1); // could be User or NULL

if($!user) // Let's check!
{
 throw new UserNotFoundException(1);
}

$user->say('Types are great'); // Error! Calling function on possible null.

/**
 * @var User $user
 */
$user->say('Types are great'); // I guess we'll make do.

!

$transactions = Transaction::all();

$isOver9000 = function($number) : bool {
 return $number > 9000;

});

$over9000 = $transactions->map(function($t) use($isOver9000) {
 return $isOver9000($t->amount());
});

!

/**
 * @var Collection<Transaction>
 */
$transactions = Transaction::all();

$isOver9000 = function(int $number) : bool {
 return $number > 9000;

});

$over9000 = $transactions->map(function(Transaction $t) use($isOver9000) : Transaction {
 return $isOver9000($t->amount());
});

THERE ARE NO SOLUTIONS
ONLY TRADEOFFS.

❓

WHERE TO FIND ME

@samtgreenwood on Twitter

samgreenwood on PHP Australia Slack

samgreenwood.me !

"

#

$

