
Called Testing JS but really
about embracing the front end

TESTING JAVASCRIPT
BUILDING JAVASCRIPT APPLICATIONS YOU WON'T HATE

1/45 — Testing Javascript

Classic JS meme about "this"
This tweet could have ended half
way through and still been relevant
to my early JS days
Is the language bad or do I just not
have the tools and experience to
write it?

Early JS apps always seemed to
degrade into a dumpster fire
Over time I've learned to love
building javascript frontends.
Big push to embracing the backend
but in this market no escaping JS

3/45 — Testing Javascript

The great thing about testing is everyone has an
opinion about how it should be done.
There are people who've been writing tests for code
longer than I've been alive so won't lecture on that
Talk about some tool I use and when and what's
worked for me (some opinion thrown in)
Want people to keep this in mind while we go over
the tools
People should be asking "Will this tool make my life
easier or not?"

WHY DO WE TEST?

4/45 — Testing Javascript

Sometimes not obvious if
testing manually. Is someone
really going to check GST
value is correct during every
QA run?

CORRECTNESS

5/45 — Testing Javascript

1. making changes and re-
running the test suite is less
stressful.
2. Extracting things out to their
own components as they're
reused

REFACTORING

6/45 — Testing Javascript

1. App complexity e.g. feature
set
2. developers on the team
3. Summed up as better dev
experience

SCALE

7/45 — Testing Javascript

IMPROVE DEVELOPER EXPERIENCE
1. I want to have an easy life. Already
writing javascript, do we want it to be any
more stressful?
2. Last place not many tests. Stressful to
deploy. Shit broke. No deploy Fridays etc
3. We got it to a point we were confidently
Shipping 10 times a day. Even 5pm Friday

Opinion territory. Been covered to
death
Everyone works on different things.
Quickly skim some classic takes
and then move on
I want to go over tools and you can
figure out which ones work for you

WHAT DO WE TEST?

9/45 — Testing Javascript

love this tweet. Not only true
but highlights cost of tests. If
tests free people wouldn't be
coming up here on stage or
writing books telling you to test.
So opinion's, lets have them

Guillermo isn't just some
random person
Creater of ZEIT, creator of OS
like socket.io and mongoose
Probably knows a thing or two
about (some) software

11/45 — Testing Javascript

Great talk and articles (albeit a little
circular). Go watch/read them
Test have cost as well as value. We want
valuable and cheap tests.
I tend to agree with this for front end
testing. You'll see why soon.
Even if you disagree that's fine. I'm
covering a wide range of tools.

Integration Tests are a scam
— J.B. Rainsberger

1. Go through each one pretty quickly and high level.
2. Not going to be too many code examples
because all of the tools have great documentation
and resources
3. This is the worst possible medium for teaching
you how to implement
4. Just sit back and relax and just ask yourself at
each tool "Will this make my life easier"
5. If it does go look at the docs and find resources
on them. They're all great!

TESTING TOOLKIT

13/45 — Testing Javascript

1. Linting (more than just indentation)
2. Spend more time reading code than writing it
3. Reduce cognitive overhead - Matt Stauffer's
point last year on code style.
5. Instant feedback on basic errors
6. Missing imports, unused vars, unreachable
statements, missing assertions, spelling errors,
ensure test file etc
7. Teaches you how to write JS "better"
8. Custom ES lint rules (e.g test file exists)

STATIC ANALYSIS
ESLINT & TYPESCRIPT

14/45 — Testing Javascript

1. Gary Bernhardt (Destroy All
Software) great talk on this
2. Gary makes two main points

I write tests anyway, so I don't need a type checker
— Someone who is wrong

15/45 — Testing Javascript

1. If this wasn't true the word
"edge case" wouldn't exist

TESTS ARE EXAMPLES
CORRECTNESS IS HARD TO PROVE FROM EXAMPLES

16/45 — Testing Javascript

1. Tests catch type errors at compile time
2. Will fail at first type error on runtime
(meaning no unexpected follow on effects)
3. Low effort, Moderate Value, Instant
Feedback
4. Just like tests they're a form of
documentation. Arguable easier to read
5. If you don't like types then don't use them. If
you do they are here.

TYPES DEFINE CATEGORIES
CATEGORIES CANNOT PROVE CORRECTNESS

17/45 — Testing Javascript

1. easy and fast
2. Fail for one reason and one
reason only (easier to debug)
3. Encourage pure functions
4. Functional composition tends to
scale better for me
5. My favourite tests

UNIT TESTING
JEST

18/45 — Testing Javascript

1. Testing how Vue or React components
interact
2. Can hook into Vue/React easily and test
child components etc
3. Honestly I write basically 0 of these on the
F.E.
4. I structure my code in a way that tries to
maximise isolation between components
(state management)

INTEGRATION TESTING
JEST

19/45 — Testing Javascript

1. Makes app really easy to unit test. Set
some state, perform an action (?), make
assertions
2. All you side effects now pushed to the
edge
3. Avoid Prop drilling and Event Buses
4. Much fewer code paths (don't have to
test AB AC AD BC BD CD etc. Just A B C D)

VUEX / REDUX

20/45 — Testing Javascript

1. There's one more kind of test that Jest allows
2. SNAPSHOT TESTING (opinion time)
3. I don't use it ever - maybe one day I will but you
should know it's there
4. outputs to seperate directory (people won't
check it)
5. By definition you can't do TDD
6. useless if you don't validate original snapshot**
7. Merge Conflicts on Snapshots Suck!

1. Why is it a thing if its so bad
2. People love it because easy and fast code
coverage
3. If you have an app with no tests, and want
to refactor and change nothing it could be
useful
4. Try snapshot artifacts like code -->
Reviewed as part of code review process
5. eslint no large snapshots

LET'S WRITE A JEST TEST

23/45 — Testing Javascript

Typescript FTW
interface Item {
 name: string
 sku: string
 price: number
}

interface CartItem extends Item {
 quantity: number
}

type Cart = Array<CartItem>

24/45 — Testing Javascript

export default function addItemToCart(item: Item, cart: Cart) {
 const [matchedItem]: Array<CartItem> = cart.filter((cartItem: CartItem) !" cartItem.sku #$$ item.sku);

 if (matchedItem) {
 matchedItem.quantity += 1;
 } else {
 cart.push({...item, quantity: 1});
 }

}

25/45 — Testing Javascript

export default function addItemToCart(item: Item, cart: Cart) {
 const [matchedItem]: Array<CartItem> = cart.filter((cartItem: CartItem) !" cartItem.sku #$$ item.sku);

 if (matchedItem) {
 matchedItem.quantity += 1;
 } else {
 cart.push({...item, quantity: 1});
 }

}

26/45 — Testing Javascript

export default function addItemToCart(item: Item, cart: Cart) {
 const [matchedItem]: Array<CartItem> = cart.filter((cartItem: CartItem) !" cartItem.sku #$$ item.sku);

 if (matchedItem) {
 matchedItem.quantity += 1;
 } else {
 cart.push({...item, quantity: 1});
 }

}

27/45 — Testing Javascript

test('adding an item to an empty cart makes the cart length equal to 1', () !" {
 // Setup
 const cart: Cart = [];

 const item: Item = {
 name: 'Some really good item',
 sku: 'SKU_FOO_BAR_BAZ_123',
 price: 2999,
 };

 // Act
 addItemToCart(item, cart);

 // Assert
 expect(cart).toHaveLength(1);
});

28/45 — Testing Javascript

test('adding an item to an empty cart makes the cart length equal to 1', () !" {
 // Setup
 const cart: Cart = [];

 const item: Item = {
 name: 'Some really good item',
 sku: 'SKU_FOO_BAR_BAZ_123',
 price: 2999,
 };

 // Act
 addItemToCart(item, cart);

 // Assert
 expect(cart).toHaveLength(1);
});

29/45 — Testing Javascript

test('adding an item to an empty cart makes the cart length equal to 1', () !" {
 // Setup
 const cart: Cart = [];

 const item: Item = {
 name: 'Some really good item',
 sku: 'SKU_FOO_BAR_BAZ_123',
 price: 2999,
 };

 // Act
 addItemToCart(item, cart);

 // Assert
 expect(cart).toHaveLength(1);
});

30/45 — Testing Javascript

1. My favourite feature in jest is code
coverage
2. Ironically this is more useful for integration
tests. But I use jest a lot for node so

!

3. If you use Jetbrains (Webstorm/
PHPStorm) this is what it looks like
4. I'm sure it's possible with VSCode and
Vim, just don't ask me how

31/45 — Testing Javascript

1. Here we write another test.
Test other code path

32/45 — Testing Javascript

1. Mutation testing is cool
2. It randomly mutates your
code and re-runs your test suite
on the code it has changed
3. Why would we want to do
this?

MUTATION TESTING
STRYKER

33/45 — Testing Javascript

1. Tests the **quality of your tests, rather than
your code
2. If you were paying attention my unit tests
examples weren't great. 100% coverage but
some problems.
2. Most codebases have tests that will give
false positives
3. These are kind of slow. No need in pipeline.
Only run on unit tests

1. First thing it will run test suite - no point running if tests
already fail
2. 2 issues with our unit tests.
3. Start with second case. Tests will pass if filter always
returns true (we only asserted on quantity of first item in cart
4. We fix that with another test and rerun
5. Now because our lazy test of asserting cart length allows
mutants because we can push anything to array
6. So now we assert on cart content
7. We see Stryker won't run if unit tests don't pass
8. Fix unit tests and rerun and we get 100% mutants killed

35/45 — Testing Javascript

1. E2E generally Slower to write
2. Generally not a fan but cypress is
actually amazing
3. Correctness for important workflows
only. Brittle to maintain
4. Don't bother asserting cart totals or
anything stupid. Thats what Unit Tests do
5. Cool video recordings from the test

E2E TESTING
CYPRESS.IO

36/45 — Testing Javascript

1. Example from small internal app I
built for a client
2. Nice fluent API for clicking/typing/
find by element
3. Assertions on classes and
content etc
4. Really nice to write and very visual

37/45 — Testing Javascript

1. Not super relevant if using inertia or
are passing data from blade into
component props
2. Once you fully embrace independent
client/server apps it becomes valuable
3. consumer driven tests that make
sure client and API are in sync

CONTRACT TESTING
PACT.IO

38/45 — Testing Javascript

1. Throws a server between client and API
2. Run test suite against pact server, caches requests
3. Next time API has a change and goes through CI/CD it
sends those cached requests to the API
4. If they don't get back the responses expected it will FAIL
THE API BUILD!
5. Amazing right? Anything that the FE doesn't care about can
change to whatever it likes
6. Stops other teams/developers breaking your code
7. Also on the downstream end it caches the responses server
sends back and makes sure your front end can handle those
message formats too

39/45 — Testing Javascript

1. Contract tests keep the effort low of maintaining
segregated backend/frontend
2. We obviously need to control API and consumer
3. Can't do if you have other consumers of API (I.e. you
expose a public version to customers too JSON Schema
Validation)
4. Allows us to easily evolve codebase knowing Pact will
guarantee contracts are met without having to do strict
versioning
5. Find before deploy if things will break (no need for slow E2E
tests)
6. Contracts managed by Pact not any individual repo.

1. Important to remember to focus on the
messages rather then the behaviour
2. It can be tempting to use contract
tests to write general functional tests for
the provider
3. Public APIs
4. Passthrough API's (queues) always
going to 2xx response

41/45 — Testing Javascript

Sticking to happy-paths is a
risk of missing different
response codes and
potentially having the
consumer misunderstand the
way the provider behaves

Given "there is no user called Mary"
When "creating a user with username Mary"
 POST /users { "username": "mary", "email": "...", ... }
Then
 Expected Response is 200 OK

42/45 — Testing Javascript

So far so good, we're covering a
new behaviour, with a different
response code.
This is where we get on the slippery
slope... it's very tempting to now
add scenarios to our contract,
something like:

Given "there is already a user called Mary"
When "creating a user with username Mary"
 POST /users { "username": "mary", "email": "...", ... }
Then
 Expected Response is 409 Conflict

43/45 — Testing Javascript

We've gone past the contract testing at this point,
we're actually testing that the User Service
implements the validation rules correctly: this is
functional testing, and it should be covered by the
User Service in its own codebase.
What is the harm in this... more testing is good, right?
These scenarios are going too far and create an
unnecessarily tight contract - what if the User
Service Team decides that actually 21 characters is
fine?

When "creating a user with a blank username"
 POST /users { "username": "", "email": "...", ... }
Then
 Expected Response is 400 Bad Request
 Expected Response body is { "error": "username cannot be blank" }

When "creating a user with a username with 21 characters"
 POST /users { "username": "thisisalooongusername", "email": "...", ... }
Then
 Expected Response is 400 Bad Request
 Expected Response body is { "error": "username cannot …..” }

44/45 — Testing Javascript

If I have seen at all it's because
of this great community
Its treated me really well and
I'm glad we have events like
this to help it grow

