
Laravel API 
Boilerplate
How to build an API in a day
By Max Snow



2

● PHP Developer since 2004-5 (2008 commercially)
● Worked to build countless projects...
● Working as Engineering Lead @ Cover Genius
● http://github.com/specialtactics
● https://maxsnow.me
● https://twitter.com/devopmax

http://github.com/specialtactics
https://maxsnow.me
https://twitter.com/devopmax


The Why (of why every project should be API)



● Build once, use everywhere
○ Multiple frontends
○ Mobile apps
○ Third-party API consumers

● Easier to test & refactor
● Easier to manage
● Strong decoupling
● Rich frontends
● Enables Microservices

Good reasons to write your backend as a REST API

4



● Strong conventions and principles
○ Because REST APIs have strong conventions and principles, we can 

reuse code to implement their functionality
● Probably 70-80% of API related logic in an application is very similar
● We can use Laravel to great effect in order to generalise about the things that 

are different for each resource (Model)
● Laravel and REST actually have a lot of similarities

○ Simplicity, convention over configuration, interface oriented, resources as models

5

The How (of making it easier)



Quite often, the problem is that it takes 
time to invest in new tech

This is especially true in any company 
that wants to prioritise new features over 

anything perceived as risky.

6



● Get moving extremely quickly with API 
development

● Almost no code necessary for 
bread-and-butter REST

● Extend and customise only when necessary 
for custom business logic

● Lots of conveniences and features
● Complimentary docker setup
● Minimalist & largely unopinionated
● Guidance for adding complex functionality
● Significant roadmap for some pretty 

awesome integrations and features

● Does not implement your business logic
● Does not magically know exactly how you 

want your API to be and behave
● Does not integrate with every one of the 

packages you might want to use
● Does not provide a frontend

What does this API Boilerplate provide you?

7



● Shift the focus away from boring, repetitive code, and more towards 
business-specific logic and hence delivering real value

● Less code is better, a conventional approach to reducing complexity is good
○ Less code also means less tests to write!

● Uses normal OOP and existing Laravel conventions where possible
○ Easy to extend and customise logic

● All heavy lifting is done by it’s own dependency package
○ Easy to update

● Preference is to be minimalist, will not try to redefine everything and does not 
require a great deal of learning on how to use it

8

The Benefits of using this boilerplate



● You need to build a large, enterprise scalable system from scratch
● You need to build a small microservice
● You are beginning to take apart the monolith
● You need a proof of concept / RAD
● You are working on a hobby project

9

Where can this be used?



10



● https://github.com/specialtactics/laravel-api-boilerplate
● https://github.com/specialtactics/laravel-api-boilerplate/wiki

11

Reference

https://github.com/specialtactics/laravel-api-boilerplate
https://github.com/specialtactics/laravel-api-boilerplate/wiki


Thank You!
Come chat to me 

@ after dark


